28 research outputs found

    The value of magnetic resonance imaging and computed tomography in the study of spinal disorders

    Get PDF
    Computed tomography (CT) and magnetic resonance imaging (MRI) have replaced conventional radiography in the study of many spinal conditions, it is essential to know when these techniques are indicated instead of or as complementary tests to radiography, which findings can be expected in different clinical settings, and their significance in the diagnosis of different spinal conditions. Proper use of CT and MRI in spinal disorders may facilitate diagnosis and management of spinal conditions. An adequate clinical approach, a good understanding of the pathological manifestations demonstrated by these imaging techniques and a comprehensive report based on a universally accepted nomenclature represent the indispensable tools to improve the diagnostic approach and the decision-making process in patients with spinal pain. Several guidelines are available to assist clinicians in ordering appropriate imaging techniques to achieve an accurate diagnosis and to ensure appropriate medical care that meets the efficacy and safety needs of patients. This article reviews the clinical indications of CT and MRI in different pathologic conditions affecting the spine, including congenital, traumatic, degenerative, inflammatory, infectious and tumor disorders, as well as their main imaging features. It is intended to be a pictorial guide to clinicians involved in the diagnosis and treatment of spinal disorders

    Removal of evidential motion-contaminated and poorly fitted image data improves IVIM diffusion MRI parameter scan–rescan reproducibility

    No full text
    International audienceBackground: It has been reported that intravoxel incoherent motion (IVIM) diffusion magnetic resonance imaging (MRI) scan-rescan reproducibility is unsatisfactory.Purpose: To study IVIM MRI parameter reproducibility for liver parenchyma after the removal of motion-contaminated and/or poorly fitted image data.Material and Methods: Eighteen healthy volunteers had liver scans twice in the same session to assess scan-rescan repeatability, and again in another session after an average interval of 13 days to assess reproducibility. Diffusion-weighted images were acquired with a 3-T scanner using respiratory-triggered echo-planar sequence and 16 b-values (0-800 s/mm(2)). Measurement was performed on the right liver with segment-unconstrained least square fitting. Image series with evidential anatomical mismatch, apparent artifacts, and poorly fitted signal intensity vs. b-value curve were excluded. A minimum of three slices was deemed necessary for IVIM parameter estimation.Results: With a total 54 examinations, six did not satisfy inclusion criteria, leading to a success rate of 89%, and 14 volunteers were finally included for the repeatability/reproducibility study. A total of 3-10 slices per examination ( mean = 5.3 slices, median = 5 slices) were utilized for analysis. Using threshold b-value = 80 s/mm(2), the coefficient of variation and within-subject coefficient of variation for repeatability were 2.86% and 3.36% for D-slow, 3.81% and 4.24% for perfusion fraction (PF), 18.16% and 24.88% for D-fast; and those for reproducibility were 2.48% and 3.24% for D-slow, 4.91% and 5.38% for PF, and 21.18% and 30.89% for D-fast.Conclusion : Removal of motion-contaminated and/or poorly fitted image data improves IVIM parameter reproducibility

    Identifying osteoporotic vertebral endplate and cortex fractures.

    No full text
    Osteoporosis is the most common metabolic bone disease, and vertebral fractures (VFs) are the most common osteoporotic fracture. A single atraumatic VF may lead to the diagnosis of osteoporosis. Prevalent VFs increase the risk of future vertebral and non-vertebral osteoporotic fracture independent of bone mineral density (BMD). The accurate and clear reporting of VF is essential to ensure patients with osteoporosis receive appropriate treatment. Radiologist has a vital role in the diagnosis of this disease. Several morphometrical and radiological methods for detecting osteoporotic VF have been proposed, but there is no consensus regarding the definition of osteoporotic VF. A vertebra may fracture yet not ever result in measurable changes in radiographic height or area. To overcome these difficulties, algorithm-based qualitative approach (ABQ) was developed with a focus on the identification of change in the vertebral endplate. Evidence of endplate fracture (rather than variation in vertebral shape) is the primary indicator of osteoporotic fracture according to ABQ criteria. Other changes that may mimic osteoporotic fractures should be systemically excluded. It is also possible that vertebral cortex fracture may not initially occur in endplate. Particularly, vertebral cortex fracture can occur in anterior vertebral cortex without gross vertebral deformity (VD), or fractures deform the anterior vertebral cortex without endplate disruption. This article aims to serve as a teaching material for physicians or researchers to identify vertebral endplate/cortex fracture (ECF). Emphasis is particularly dedicated to identifying ECF which may not be associated apparent vertebral body collapse. We believe a combined approach based on standardized radiologic evaluation by experts and morphometry measurement is the most appropriate approach to detect and classify VFs

    T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging

    No full text
    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging's basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the disc

    Informed appropriate imaging for low back pain management: A narrative review

    No full text
    Most patients with acute low back pain (LBP), with or without radiculopathy, have substantial improvements in pain and function in the first 4 weeks, and they do not require routine imaging. Imaging is considered in those patients who have had up to 6 weeks of medical management and physical therapy that resulted in little or no improvement in their LBP. It is also considered for those patients presenting with suspicion for serious underlying conditions, such as cauda equina syndrome, malignancy, fracture and infection. In western country primary care settings, the prevalence has been suggested to be 0.7% for metastatic cancer, 0.01% for spinal infection and 0.04% for cauda equina syndrome. Of the small proportion of patients with any of these conditions, almost all have an identifiable risk factor. Osteoporotic vertebral compression fractures (4%) and inflammatory spine disease (<5%) may cause LBP, but these conditions typically carry lower diagnostic urgency. Imaging is an important driver of LBP care costs, not only because of the direct costs of the test procedures but also because of the downstream effects. Unnecessary imaging can lead to additional tests, follow-up, referrals and may result in an invasive procedure of limited or questionable benefit. Imaging should be delayed for 6 weeks in patients with nonspecific LBP without reasonable suspicion for serious disease.The translational potential of this article: Diagnostic imaging studies should be performed only in patients who have severe or progressive neurologic deficits or are suspected of having a serious or specific underlying condition. Radiologists can play a critical role in decision support related to appropriateness of imaging requests, and accurately reporting the potential clinical significance or insignificance of imaging findings. Keywords: Imaging, Low back pain, Natural history, Radicular pain, Radiculopathy, Spin

    Osteoporotic vertebral endplate and cortex fractures: A pictorial review

    No full text
    Despite years' research, the radiographic criteria for osteoporotic vertebral fracture and its grading remain debated. The importance of identifying vertebral endplate/cortex fracture (ECF) is being recognised; however, evaluation of osteoporotic ECF requires training and experience. This article aims to serve as a teaching material for radiologists/physicians or researchers to evaluate osteoporotic ECF. Emphasis is particularly dedicated to identifying ECF that may not be associated with apparent vertebral body collapse. We suggest a combined approach based on standardised radiologic evaluation by experts and morphometry measurement is the most appropriate approach to detect and classify osteoporotic vertebral fractures. The translational potential: A good understanding of radiologic anatomy of vertebrae and fracture signs of endplate/cortex are essential for spine fragility fracture assessment. Keywords: Endplate, Normal variants, Osteoporosis, Osteoporotic fractures, Radiograp

    The role of radiography in the study of spinal disorders

    No full text
    Despite the growing use of computed tomography (CT) and magnetic resonance imaging (MRI) in the study of spinal disorders, radiography still plays an important role in many conditions affecting the spine. However, the study and interpretation of spine radiograph is receiving less attention and radiologists are increasingly unfamiliar with the typical findings in normal and pathologic conditions of the spine. The aim of this article is to review the radiologic indications of radiograph in different pathologic conditions that affect the spine, including congenital, traumatic, degenerative, inflammatory, infectious and tumour disorders, as well as their main radiographic manifestations
    corecore